In vitro and in vivo studies on biocompatibility of carbon fibres

نویسندگان

  • Izabella Rajzer
  • Elzbieta Menaszek
  • Lucie Bacakova
  • Monika Rom
  • Marta Blazewicz
چکیده

In the present study we focused on the in vitro and in vivo evaluation of two types of carbon fibres (CFs): hydroxyapatite modified carbon fibres and porous carbon fibres. Porous CFs used as scaffold for tissues regeneration could simultaneously serve as a support for drug delivery or biologically active agents which would stimulate the tissue growth; while addition of nanohydroxyapatite to CFs precursor can modify their biological properties (such as bioactivity) without subsequent surface modifications, making the process cost and time effective. Presented results indicated that fibre modification with HAp promoted formation of apatite on the fibre surface during incubation in simulated body fluid. The materials biocompatibility was determined by culturing human osteoblast-like cells of the line MG 63 in contact with both types of CFs. Both tested materials gave good support to adhesion and growth of bone-derived cells. Materials were implanted into the skeletal rat muscle and a comparative analysis of tissue reaction to the presence of the two types of CFs was done. Activities of marker metabolic enzymes: cytochrome c oxidase (CCO) and acid phosphatase were examined to estimate the effect of implants on the metabolic state of surrounding tissues. Presented results evidence the biocompatibility of porous CFs and activity that stimulates the growth of connective tissues. In case of CFs modified with hydroxyapatite the time of inflammatory reaction was shorter than in case of traditional CFs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Carbon Nanotubes as Near Infrared Radiation (NIR) Molecules for Cancer treatment

Introduction: The photo-thermal therapy by nanoparticles has been recently known as an efficient strategy for the cancer treatment. Carbon nanotubes (CNTs) have been extensively studied in biomedical application due to the easy uptake and high permeability in the cells, biocompatibility in biological environments and also their unique electrical, thermal properties. They genera...

متن کامل

Antioxidant potential and hepatoprotectivity of hydromethanolic extract of Litchi chinensis fruits: In vivo and in vitro studies

The antioxidant activity and phytoconstituents of the hydromethanolic extract of Litchi chinensis (HELC) fruit was explored in the present study. The antioxidant potential of extract has been evaluated using several antioxidant models and results were compared to standards. Fruit extract showed effective reducing power and free radical scavenging activity in a dose-dependent manner. In case o...

متن کامل

Evaluation of Biopolymers Effect on In vitro Biocompatibility Property of Nano Hydroxyl Apatite Composites

In this work, we report the effect of biopolymers (starch and gelatin) on in vitro biocompatibility property of nano hydroxyapatite (nHAp) composites. Cell culture and MTT assays were performed for in vitro biocompatibility. They show that nHAp can affect the proliferation of cells and the nHAp-starch and nHAP-gelatin biocomposites have no negative effect on the cell morphology, viability and p...

متن کامل

An in vivo and in vitro investigation on hepatoprotective effects of Pimpinella anisum seed essential oil and extracts against carbon tetrachloride-induced toxicity

Objective(s):  Protective effects of different extracts and essential oil from Pimpinella anisum           L. seeds were examined against carbon tetrachloride (CCl4)-induced toxicity. The parameters such as serum transaminases, lactate dehydrogenase activity, hepatic glutathione content, liver lipid peroxidation and histopathological changes of liver were assessed as toxicity markers. In the in...

متن کامل

Evaluation of Biopolymers Effect on In vitro Biocompatibility Property of Nano Hydroxyl Apatite Composites

In this work, we report the effect of biopolymers (starch and gelatin) on in vitro biocompatibility property of nano hydroxyapatite (nHAp) composites. Cell culture and MTT assays were performed for in vitro biocompatibility. They show that nHAp can affect the proliferation of cells and the nHAp-starch and nHAP-gelatin biocomposites have no negative effect on the cell morphology, viability and p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2010